
O P T I M AN
o 77

July 2008

Mathematical Programming Society Newsletter

INFORMS Puerto Rico 2		 Testing Cut Generators for MILP 6		 MPS Chair’s Column 10

77

This second issue of 2008 has accuracy in
computation and benchmarking of computer
codes as main themes. The two topics are strictly
related. In the scientific contribution François
Margot proposes a methodology for testing the
accuracy and the effectiveness of cut generators
for Mixed-Integer Linear Programming while
in the discussion column Matthew Saltzman
reports on a very interesting panel discussion on
benchmarking held in Puerto Rico during the
INFORMS International 2007. We hope that

putting these two contributions together in issue
77 of Optima would be beneficial for our readers
and the entire Mathematical Programming
community since the topics have crucial impact in
the area.

Matthew Saltzman’s contribution is written
“in memoriam” of Lloyd Clarke (1964–2007),
a respected member of the Mathematical
Programming community and a good friend.
Optima 77 is dedicated to him.

Alberto Caprara
Andrea Lodi
Katya Scheinberg

Accuracy in computation and benchmarking

optim a 7 7 july 2008 page �

The 2007 INFORMS International
meeting took place in Puerto Rico in July.
One session there was a panel discussion
that I organized, entitled Benchmarking:
Who, What, When, Where, Why?
Participants included the late Lloyd Clarke
of ILOG, Steve Dirkse of GAMS, Bob
Fourer of Northwestern University, Bill
Hart of Sandia National Laboratories, Leon
Lasdon of the University of Texas, and
François Margot of Carnegie Mellon. Carol
Tretkoff of ILOG took notes, doing her
level best to keep up with the discussion.
(Hans Mittleman, an obvious choice for
a panelist, was at the EURO conference,
which took place that same week in Prague.)
I would like to thank all of the participants
for taking part in the original discussion
and helping me recall what went on. This
article is a recap of my impressions of that
discussion, and I take responsibility for any
inaccuracies, omissions, or distortions of the
events.

Participants were free to address any
topics they chose. However, I did set up the
discussion by posing the title questions. Our
main objective was not to resolve issues so
much as to raise them, and to consider how
we might move forward to start to address
them.

Who, when, why? Who should carry out
benchmarks and comparisons to ensure that
they are reliable, unbiased, and useful? Who
makes up the audience for benchmark studies?
Under what circumstances should various
types of benchmarks or comparisons be carried
out? What do researchers, developers, and
users expect to learn from benchmarks?

Benchmarks may be carried out for
different audiences. Those carrying them
out may have agendas that differ from those
using them to decide on algorithms or codes
to use when solving a particular problem.
For example, developers of new algorithms
for a specific problem may compare their
codes with existing specialized codes for
that problem or general-purpose codes for
broader classes of problems.

Potential users of commercial or other
general-purpose solvers often have highly
specialized workloads, so benchmarks on
standard test sets may not provide them
with useful selection criteria. Of course,
vendors are interested in showing their codes
off to best advantage.

One thing is clear: the interests of some
people who produce benchmarks can be
quite different from the interests of people
who consume them. I am not suggesting at
all that anything nefarious is going on here.
In many cases, it is simply impossible for a
vendor or author to address the concerns of
all possible customers or readers.

One of Lloyd Clarke's main points
regarding benchmarks of commercial codes
is that every customer has a unique work
profile. A vendor simply cannot provide
a single benchmark that addresses all
customer workloads, only the customer
can provide an appropriate set of problem
instances. So customers whose primary
interest is in determining which of a
competing set of codes should be acquired
can only make such a determination
by conducting their own tests with
representative problem instances from their
own collections, on their own machines.

Authors of research articles are naturally
interested in showing their codes off in the
best possible light. Again, while there need
not be any intention to mislead readers, this
interest can guide the researcher to produce
results consistent with his interests. For
example, a researcher might select a suite
of test problems, work with his algorithm
to get it to perform well on that set of
problems, and then use the same problems
to carry out the published study. If the study
involves a head-to-head comparison with
another code, the researcher may not make
the same effort to tune the competitor's
code. It is quite common, for example, to
see a specialized algorithm compared against
a general purpose code run with all settings
left at their default values.

Authors may not be experts in statistical
analysis, so may not perform incisive

Notes on a Panel Discussion on Benchmarks at
INFORMS Puerto Rico, July 2007

Matthew J. Saltzman
Clemson University
May 22, 2008

optim a 7 7 july 2008 page �

analyses. Many computational studies
still consist of reporting times on some
(arbitrary) collection of instances and
reporting solution times on the individual
instances and/or the total group. Statistical
tests, if they are performed at all, may not
be valid because the data may not satisfy the
tests' assumptions (e.g., normality).

What? What are components of a fair,
unbiased, useful benchmark or comparative
study?

• How should parameter settings be
chosen?

	 Parameter setting is a challenging
problem. General-purpose solvers may
have many different parameters and
determining good combinations of
values for particular problems may
require significant testing. Even then,
solvers may behave differently from
one version to the next, so parameter
settings need to be recomputed for
new versions. There has been some
limited experimentation with dynamic
parameter adjustment, but this area of
research is very young.

	 Even in the case where solvers of
similar capability are being compared,
the solvers may have non-comparable
parameters and tolerances or different
default settings for the “same”
parameters. François Margot addresses
a related problem involving tolerances,
accuracy of floating point arithmetic
and cutting-plane validity elsewhere in
this issue.

• How should head-to-head comparisons
be carried out when comparing:

	 – general-purpose codes,
	 – a special-purpose code against a

 general-purpose code, and
	 – different special-purpose codes?

	 Is it fair to compare, say, a special-
purpose code with an off-the-shelf
solver with all default parameter
settings? If not, how might one assess
the performance of a special-purpose
code?

What sort of analysis is appropriate when
comparing codes? How can a reader
understand the results of a comparison?

Where? Where should benchmark results be
published? Where can funding be obtained to
carry out benchmarking studies?

Software development and related
activities—such as benchmarking—do
not conform to the common academic
notion of “research”, which corresponds
to the “scholarship of discovery” (i.e.,
pursuit of new knowledge for its own sake)
in Boyer's taxonomy [1]. Instead, they are
more related to “scholarship of integration,”
“scholarship of application,” or “scholarship
of teaching and learning.” Discovery is the
traditional realm of archival journals and
federal funding agencies, whereas it is more
difficult to gain recognition for integration
and the creation of infrastructure. Thus,
publishing or funding a benchmark study
unaccompanied by creation of a new
algorithm or model is problematic.

As a result, generating interest among
researchers in carrying out benchmark
studies is challenging, even when we agree
that such studies are useful. In addition,
even if benchmark studies were publishable
in archival journals, it is not clear that they
would reach the audience that would benefit
most.

Panelist comments. Panelists tended
to focus on two issues: (1) what kinds of
measurements and comparisons are useful,
and (2) how can large-scale benchmarks be
managed efficiently.

François Margot pointed out that it is
reasonable to compare run times of two
solvers if they generate the same solution.
But often, two solvers produce different
“optimal” solutions. In that case, we need
to compare not just running times, but
also solution quality. If the solution one
solver generates satisfies looser feasibility
or optimality conditions than that of
its competitor, then it is not clear that
comparing run times is fair. Comparisons
are particularly risky for problems that
are not well scaled. An audience member
pointed out that rescaling problems can
often mitigate this difficulty. Margot
advocates that solvers provide quality

guarantees such as bounds on the solution's
distance from feasibility, optimality,
integrality.

Leon Lasdon pointed out that there are
facilities in GAMS that make benchmarking
simpler to manage.

Bill Hart observed that solution times
are not the only factors of interest in
performance analysis. Solution quality
and reliability are also key factors. While
open-source codes have many advantages
in an environment where custom solvers
are necessary, reliability is an area where
open-source codes are not always a match
for their commercial counterparts. Sandia
runs a large suite of unit tests for reliability.
Performance testing is less important, as
long as performance is within reason.

Bob Fourer described the NEOS
Benchmarking Service. A user can submit a
problem instance to the service and have it
solved on all solvers of interest, on a single
machine.

Fourer also described a useful and
currently popular comparison method
called performance profiles [3]. Performance
profiles plot a performance metric τ on the
horizontal axis and, for each solver s, the
fraction ρs(τ) of test problems with
log2 rps ≤ τ, where rps is the ratio of solver
s's metric on problem p to the best solver's
metric on that problem. Thus, ρs(0) is the
fraction of problems on which solver s
performed best, and ρs(∞) is the fraction of
problems that solver s solved successfully.

Performance profiles have some appealing
features as benchmarking statistics:

• They are not sensitive to the outcomes
for a small subset of problems.

• They are not sensitive to small changes
in outcome values.

• They provide an indication of the size of
the difference in performance.

• They can be used with a variety of
metrics.

• They can be used to compare more
than two solvers.

As far as I know, however, there is
no statistical analysis associated with
performance profiles. The profile displays
can be compelling, but I am not aware of
any quantitative summary of the results
or hypothesis tests that can support the
impressions given by the graphs. Examples

optim a 7 7 july 2008 page �

of a variety of statistical analyses of
computational experiments can be found in
[2].

Steve Dirkse described the PAVER
(Performance Analysis and Visualization
for Efficient Reproducibility) performance
analysis service, available at the GAMS
World Web site (www.gamsworld.org/
performance/paver). PAVER accepts GAMS
trace files and produces a variety of analyses.
Dirkse emphasized reproducibility as a goal
for benchmarking and the need for tools
and test sets to make benchmarking as
painless as possible. Lloyd Clarke reiterated
Hart's points regarding benchmarking and
quality assurance (which includes regression
tests) from a developer's perspective.
He emphasized that customers should
benchmark their own work profiles, rather
than relying on published benchmarks.

Conclusions. Because of the variety
of needs, there is no easy recipe for
benchmarks. Users will need to benchmark
using their own workloads, authors will
need to publish experiments, developers will
need to include regression testing. Several

things can be done to improve the quality
of results.

• Test harnesses and data sets can be
improved to make carrying out
experiments easier. PAVER is a step
in this direction. Hans Mittleman's
benchmark site (http://plato.asu.edu/
bench.html) is a useful resource for test
problems and other information. There
are several other collections of test
instances for various problems, but they
are often not well known outside of the
communities of researchers working on
those problems.

• Authors and readers need to be educated
on how to carry out experiments and
analyse the results. Journals need to
set standards and referees need to
enforce them in publications. Journals
also need to provide facilities to
support reproducibility of published
results. A new journal—Mathematical
Programming Computation, edited by
Bill Cook of Georgia Tech and to be
published by Springer in 2009—will
require that referees have access to
software and data sets be included

with submissions so that results of
computational tests can be verified,
and will encourage the publication of
software as open source.

• The hardest problem is that the
academic culture needs to change
to give credit for these kinds of
activities. Improved benchmarking
tools—a part of broader infrastructure
development—enhance the progress of
research and the incorporation of new
results in applied settings.

In memoriam: Lloyd Clarke, 1964-2007.

References
[1] E. Boyer. Scholarship Reconsidered: Priorities of

the Professoriate. The Carnegie Foundation
for the Advancement of Teaching,
Stanford, California, 1990.

[2] M. Coffin and M. J. Saltzman, “Statistical
Analysis of Computational Tests of
Algorithms and Heuristics,” INFORMS
Journal on Computing 12(1), 2000, 24-44.

[3] E. D. Dolan and J. J. Moré, “Benchmarking
Optimization Software with Performance
Profiles” Mathematical Programming 91,
2002, 201-213.

Application for Membership

I wish to enroll as a member of the Society.
My subscription is for my personal use and not for the benefit of any library or institution.
c I will pay my membership dues on receipt of your invoice.
c I wish to pay by credit card (Master/Euro or Visa).

credit card no.	 expiration date

family name

mailing address

telephone no.	 telefax no.

E-mail

signature

Mail to:
Mathematical Programming Society
3600 University City Sciences Center
Philadelphia, PA 19104-2688 USA

Cheques or money orders should be
made payable to The Mathematical
Programming Society, Inc. Dues for
2008, including subscription to the
journal Mathematical Programming,
are US $85. Retired are $40. Student
applications: Dues are $20. Have a faculty
member verify your student status and
send application with dues to above
address.

Faculty verifying status

Institution
4

optim a 7 7 july 2008 page �

Who will host
ISMP 2012?
Call for site proposals

The triennial International Symposium on Mathematical
Programming (ISMP) is the flagship event of our Society.
It regularly gathers over a thousand confirmed and young
scientists from all over the word, representing all areas, theory
and applications of the field. Hosting such an event thus
represents a big challenge and a vital service to the community.
Of course it also has a lasting effect on the visibility of the
hosting institution. This call for proposals is addressed at local
groups willing to take up that challenge.

Preliminary bids will be examined by the Symposium Advisory
Committee (SAC) , which will then issue invitations for
detailed bids. The final decision will be made and announced
during the upcoming ISMP in Chicago. The SAC is composed
of Abilio Lucena, Kazuo Murota, Rüdiger Schultz, David
Williamson, Laurence Wolsey, and chaired by Thomas
Liebling. Preliminary bids should be brief and contain some
info about

1. The site
2- Facilities (traditionally the symposium venue has been a

university campus)
3- Logistics, travel, accommodation, transportation,...
4- Likely local organizers

Please address your preliminary bids until September 15,
2008 to the SAC chair thomas.liebling@epfl.ch, who will also
provide further indications at request.

MIP 2008: Workshop
on Mixed Integer
Programming
The fifth Workshop on Mixed Integer Programming (MIP 2008)
will be held at the Columbia University, New York, during August
4-8, 2008. The workshop is open for participation. The program
will be composed of a limited number of invited talks organized in
a single track. In addition, there will be a contributed poster session
and all participants are invited to submit an abstract for the poster
session.

Speakers
 * Warren Adams — Clemson University
 * Kent Andersen — University of Copenhagen
 * Alper Atamturk — University of California, Berkeley
 * Pasquale Avella — Universita del Sannio
 * Christoph Buchheim — University of Cologne
 * Emilie Danna — ILOG
 * Daniel Espinoza — Universidad de Chile
 * Yongpei Guan — University of Oklahoma
 * Oktay Günlük — IBM Research
 * Ignacio Grossmann — Carnegie Mellon University
 * John Hooker — Carnegie Mellon University
 * Ellis Johnson — Georgia Institute of Technology
 * Bala Krishnamoorthy — Washington State University
 * Adam Letchford — Lancaster University
 * Sven Leyffer — Argonne National Laboratory
 * Peter Malkin — University of California-Davis
 * Ronald Rardin — University of Arkansas
 * Gabriel Tavares — Dash Optimization
 * Rekha Thomas — University of Washington
 * Mike Trick — Carnegie Mellon University
 * Hamish Waterer — University of Auckland, New Zealand
 * Ruriko Yoshida — University of Kentucky

Program Committee 	
Simge Kucukyavuz, Quentin Louveaux, Andrew Miller, Gabor
Pataki, Jean-Philippe Richard

Local Committee
Daniel Bienstock, Oktay Günlük.

Conference Web page: http://coral.ie.lehigh.edu/mip-2008/index.
html

We encourage you to secure lodging as soon as possible — prices

optim a 7 7 july 2008 page �

Testing Cut Generators for MILP
François Margot
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA 15213
fmargot@andrew.cmu.edu
March 2008

Abstract
We present a methodology for testing the
accuracy and strength of cut generators
for mixed-integer linear programming.
The proposed procedure first assesses the
accuracy of the generator and then compares
the strength of generators with similar
accuracy.

1 Introduction
Empirical testing of cut generators for
Mixed-Integer Linear Programming (MILP)
is a problem appearing in various settings.
In its simplest form, it occurs when studying
a new class of cutting planes, or when a new
implementation of a cut generator needs
to be compared with an existing one. A
related situation is the problem of testing
different cutting strategies, where decision
about which cut generators to apply and
how to set their respective parameters. Note
also that generators need to be compared
on speed (Does the generator help solving
a problem faster?) and accuracy (How
often does the generator generate invalid
cuts?). The latter point, in particular, seems
to have been completely ignored in the
literature. Developers usually add various
safeguards to avoid as much as possible the
generation of invalid cuts due to limited
numerical accuracy, but the effectiveness
and pertinence of these safeguards is rarely
discussed and almost never supported by
data. Papers studying provably valid cut
generation in finite precision arithmetic have
appeared recently [6, 20] and development
of codes working in infinite precision
arithmetic is also underway [1, 7, 12].

Here, we assume that a given (bug free)
cut generator is given and we want to obtain
an empirical measure on how often it
generates invalid cuts due to the limitations
of finite precision arithmetic computations.
We also describe a methodology to compare
the strength of several cut generators going
beyond the customary reporting of “average
gap closed at the root” or average run
time of a branch-and-cut code using these
generators on sample problems.

There are obvious limitations on the
information obtained from either of these
approaches: For the first approach, the

strength of the cuts at the root node is not
always a good indicator of the usefulness of
a family of cuts, there is a trade off between
the quality of the lower bound and the time
devoted to obtain it, and it is mostly useless
to test the accuracy of the cut generator. For
the second approach, most papers are happy
when the code finds the optimal solution
of the problem, assuming implicitly that
everything went fine. However, it might
well be the case that the optimal solution
is found early in the search by a heuristic
algorithm (or that several optimal or near-
optimal solutions exist and one of them
survived). What happens afterwards with
the cut generators is then moot. To push
things to the extreme, having a cut generator
that generates invalid cuts can even appear
positive, as the solution time might go down
significantly. To avoid this problem, turning
off the heuristic algorithm is a possibility,
with the drawback that a problem that
could be solved in minutes requires a much
longer solution time. Another problem is
the interaction with other cut generators.
It is well-known for example that Mixed-
Integer Gomory cuts [8], Mixed-Integer
Rounding cuts [19], and Disjunctive cuts [2,
11] are equivalent [13]. It is then difficult
to assess the contribution of one of these
cut generators when the others can pick
up the slack. On the other hand, trying
to solve problems with a branch-and-cut
using a single cut generator and no heuristic
algorithm is likely to require unacceptably
large computation time.

A major reason why the second approach
dominates the empirical papers is that it
benchmarks the “true” objective: solving
problems as fast as possible. This is certainly
appropriate when benchmarking branch-
and-cut codes. However, as pointed out by
Hooker in [9, 10], this type of empirical
results yield very little insight on how to
improve the tested algorithms. Devising
specific experiments to illustrate properties
or weaknesses of the algorithms is the
major point of a true empirical analysis of
algorithms. McGeoch develop this idea in
several papers [15, 16, 17, 18].

The goal of this paper is to describe a
methodology for testing cut generators
that avoids most of the pitfalls of the

optim a 7 7 july 2008 page �

usual approaches and is in the spirit of
the empirical analysis of algorithms of
Hooker. It is based on solving sample
MILP problems repeatedly, using a random
branching rule and diving towards a
known feasible solution. The introduction
of a random component allows for the
generation of many data points from a single
instance and for meaningful statistical
testing of the results. This paper intends
to convey the main ideas of the testing
procedure and additional details can be
found in the technical report [14].

The paper is organized as follows. Section
2 describes the proposed method for testing
a cut generator. This method, random
diving towards a feasible solution, requires
the knowledge of a feasible solution of the
problem, where the feasibility requirement
is much stricter than the commonly used
“not violating too much any constraint”.
This requirement is quite difficult to meet
for many usual benchmark MILP problems
(see [14] for details). Section 3 then reports
results obtained for seven Gomory cut
generators. First, these generators are
compared for accuracy in Section 3.1 and
three of them are deemed having similar
accuracy. These three generators are then
compared for strength in Section 3.2.
Conclusions are given in Section 4.

2 Random Diving Towards
0-Feasible Solutions
Consider the instance I of an MILP
problem:

	 min	 c(x, y)
	 s.t.	 A(x, y) ≥ b
		 x ∈ R n1

		 y ∈ Z n2		 (1)

Let (xI , yI) be a solution of I and let ε ≥ 0.
The solution is ε-integer if each entry in yI
is within ε of an integer value. The solution
is ε-feasible if it is ε-integer and the absolute
violation of any of the constraints
A(xI , yI) ≤ b is at most ε.

It is quite difficult to find how often a cut
generator for MILP generates invalid cuts.
We suggest to estimate this by generating a
set S of feasible integer solutions and testing
how often one of them is cut. In order to
have a valid test, it is necessary that the
solutions in S are 0-feasible solutions, as any
solution that if not ε-feasible for some

ε > 0 might correctly be cut by a generated
cut. This is more than a minor problem,
as MILP solvers return slightly infeasible
solutions on most problems. The only way
we found to generate 0-feasible solutions for
MILP problems is an iterative procedure
that find an almost 0-feasible solution and
modifies the right hand side of violated
constraints until a 0-feasible solution for the
modified problem is obtained.

In this section, just assume that we have
a 0-feasible solution (xI , yI) of an instance
I of (1). Assume that we want to test the
accuracy of a cut generator. We can dive
towards the solution, while using the cut
generator, and record if the solution is still
ε-feasible or not for some value of ε (we use
ε = 10−6 in the tests). More precisely:

1. Start with the LP relaxation of I; flag := 0.
2. Repeat

2.1 Repeat k times
	 2.1.1. Generate and apply cuts.
	 2.1.2. Resolve the LP.
	 2.1.3. If the LP is infeasible then

	 flag := 2 and stop.
	 2.1.4. Otherwise, let (x̄, ȳ) be the

optimal LP solution.
2.2. If (xI , yI) is not ε-feasible then

	 flag := 1.
2.3. If (x̄, ȳ) is ε-integer then stop.
2.4. Otherwise select randomly an index j

 with ȳj fractional.
2.5. Set yj := yI

j

j

 in the LP.
2.6. If a time limit is reached then

 flag := 3 and stop.

Algorithm 1: Diving towards a 0-feasible
solution.

The algorithm either terminates with flag
= 0, meaning that the LP relaxation has an
ε-integer feasible optimal solution and
(xI , yI) is still ε-feasible, or it raises one of
three types of failure indicated by the value
of flag:

• flag = 1: (xI , yI) is no longer ε-feasible,
but another ε-integer feasible solution
is reached.

• flag = 2: The LP relaxation is infeasible.
• flag = 3: The time limit is reached.

Terminating with flag = 1 or flag = 2 is
annoying, but reaching flag = 1 is sometimes
less severe than reaching flag = 2, as a slight
alteration of the values of the continuous

variables xI might restore ε-feasibility.
Notice that it is possible that the

algorithm terminates in step 2.3 with a
solution (x, ȳ) that is ε-integer but not
ε-feasible. This indicates a lack of precision
in the LP solver, something that is unrelated
to the cut generator. It seems thus fair not
to penalize the cut generator by reporting
a failure in this case. On the other hand,
it could happen that the algorithm stops is
step 2.1.3, reporting incorrectly that the LP
is infeasible due to a similar lack of precision
in the LP solver. If (xI , yI) is then still ε-
feasible, it might be unfair to report a failure
for the cut generator. However, this case
seems quite unlikely to happen. Note that
these problems could be avoided by using an
exact LP solver such as QSopt ex [1], Lpex [7],
or perPlex [12]. However, if the cut generator
is intended to be used with a nonexact
LP solver, it is unclear which experiment
setting gives the most pertinent information.
Experiments in this paper are obtained
using a non-exact LP solver, Clp [5] and the
intent is also to test how the generated cuts
might create problems for the LP solver.

The above scheme has several interesting
features: First, the randomization in step
2.4 allows for statistical testing. From
one instance with a few hundred of
integer variables, one can generate many
observations. It is also possible to make
statistics on cut generation time, LP resolve
time, evolution of the lower bound, and, of
course, the failure types. In addition, the
number of variables set to integer values in
step 2.4 before reaching an integer solution
can be used as a measure of the strength
of the cuts: The purpose of using cuts is
to reduce the size of the enumeration tree.
Stronger cuts should yield shorter paths
from the root to the leaves of the tree, and
this should be reflected in the average length
of paths observed while diving towards
a feasible solution. This test is devised to
test the accuracy of the cuts, not to predict
the power of a cut generation strategy in a
branch-and-cut algorithm.

3 Application Example
As an example of application of Algorithm
1, tests on variants of two cut generators
are reported (the paper [14] compares
four generators). These generators both
implement Gomory mixed-integer cut
generators:

optim a 7 7 july 2008 page �

1. CglGomory: The default Gomory
cut generator of the Cut Generation
Library (Cgl) of COIN-OR [5]. This
generator is denoted by G in the
remainder.

2. CglGomory2: A Gomory cut generator
written by the author that has many
parameters. This generator uses
optimal tableau information provided
by the LP solver whereas G recomputes
the optimal tableau from the optimal
basis information. This generator is
denoted by G2 in the remainder.

As mentioned in the previous section,
applying this formula blindly to generate
cuts is likely to generate some invalid cuts.
This is why the generators listed above
have ways to prevent the generation of
invalid cuts as well as for discarding small
coefficients in a cut. Generator G2 is fully
parametrized making easy to use it with
different values of the parameters. Define
the dynamism of a cut is the ratio between
the smallest and largest absolute values of
its nonzero coefficients. The generators have
a threshold LUB for deciding that a variable
upper bound is large. The parameters that
are modified in the experiments and their
default values are:

• MAXDYN = 1e8: a cut is discarded if
none of the variables with nonzero
coefficient have a large upper bound
and its dynamism is larger that this
value.

• MAXDYN LUB = 1e13 similar to MAXDYN,
but for cuts where some of the variables
with nonzero coefficients have a large
upper bound.

• AWAY = 0.05: let f0 be the fractional part
of the basic variable associated with a
row of the optimal tableau; the row is
not used to generate a cut if f0 is not at
least AWAY from an integer value.

• MINVIOL = 1e-7: If the violation of the
cut by the current optimal LP solution
is lower than this number, the cut is
discarded.

In addition to the default settings above,
five variants of G2 are tested. All variants are
more restrictive than the default generator
and should generate less and “safer” cuts.
Variants are labeled G2P1 through G2P5 and
with parameters set as in the default setting
except the following: P1 has MINVIOL = 1e-4,
P2 has MINVIOL = 1e-2, P3 has AWAY = 0.08,

P4 has MAXDYN = 1e4 and MAXDYN LUB = 1e8,
and P5 has MAXDYN = 1e6 and MAXDYN LUB
= 1e10.

All generators are set so that there is no
limit on the number of cuts they generate
and no limit on the number of nonzero
coefficients in generated cuts. All results are
obtained using k = 10 in Algorithm 1.

Before discussing the results, let us make
it clear that the settings used above (in
particular having no limit on the number
of nonzero coefficients in a cut) are chosen
to put stress on the generators and LP
solver. Using 10 rounds of cutting after each
fixing of a variable is also probably not the
optimal setting for using these generators
in a branch-and-cut code. Nevertheless,
the comparison across the fourteen variants
considered is a fair one.

3.1 Comparing Accuracy
The goal of this section is to compare
the accuracy of the seven generators on
the MIPLIB3_C instances. These sixteen
instances are modifications of some of the
benchmark problems from MIPLIB3 [3]. We
use Algorithm 1 with k = 10 and 20 trials
for each 0-feasible solution for a total of
5,500 trials for each generator.

Table 1 reports the value of flag at the end
of Algorithm 1. In term of success (i.e. flag =
0), the winner is G2P4. For failures of types 1
or 2 (the most critical ones) G perform best,
but the number of trials that it is unable to
complete within the time limit (10 minutes
cpu) is much larger. There is an obvious
difference in the failure patterns for these
algorithms. A partition of them into the
four groups {G}, {G2, G2P1}, {G2P2, G2P3}, and
{G2P4, G2P5} seems a fair grouping. In term
of failure 1 and 2, groups {G}, and {G2P4,
G2P5} are similar, but the latter solve many
more instances within the time limit.

Table 1: Gomory cut generators comparison
on MIPLIB3_C instances.

Interesting insights on the behavior of
the generators can be obtained by studying
the repartition of trials ending with flag
> 0 among the different instances. Some
instances (such as gt2_c) create problems for
all cut generators, each of them failing at
least twice. This instance has 188 variables,
24 of them binary, 29 constraints with a
maximum absolute value for right-hand
side of about 6,600, all variables bounds at
most 15 in absolute value, dynamism of 152,
and a maximum absolute value of 9 for the
entries of the 0-feasible solutions used.

3.2 Comparing Strength
While Algorithm 1 is designed to test the

accuracy of a generator, it is possible to get
information about the strength of the cuts
by performing statistical tests on the number
of variables set to integer values in step 2.4
in each trial. Comparing performances
of algorithms by statistical tests is well
covered in the literature. We refer the
reader to [4] for an excellent introduction
to the topic. The basic test commonly
used when comparing performances is a
t-test. However, when comparing more
than a pair of algorithms, other tests
have been devised. In this paper, we use
Tukey’s Honest Significant Differences test
(THSD test). Both the t-test and THSD
t-test are based on Analysis of Variance
(ANOVA). The statistical design used for
our application is a two-way factorial design
with three factors: “algorithm”, “instance”,
and “solution”. The factor “solution” is
embedded in the factor “instance”, and the
factor “algorithm” is crossed with “instance/
solution”. For each value of “algorithm”,
“instance” and “solution”, we have 20
observations for the number of variables
fixed to integer values. The observations
for runs that fail are removed. Hence, if
none of the observation results in a failure,
we have a balanced design. Otherwise, the
design is slightly unbalanced, assuming
that only a low percentage of runs end
with a failure. This is supported by the
tables listed in Section 3.1. Both ANOVA
and THSD might give misleading results
with unbalanced designs, but can handle
slightly unbalanced designs. Moreover,
we are mostly interested in the effect
associated with the factor “algorithms”, and
the ANOVA computations can be trusted
for the main factor, even with unbalanced
designs. The results below are obtained

optim a 7 7 july 2008 page �

using the statistical package R [21] version
2.5.1 (2007-06-27). The ANOVA results
show that the effect associated with the
factor “algorithm” is significant with 95%
confidence.

The results of the THSD test are given in
Table 2. A “+” (resp. “−”) entry in row A and
column B means that algorithm A required
more (resp. less) variables to be fixed than
algorithm B with a significance threshold of
95%. A (“.”) entry means that no conclusion
can be drawn from the results. A total order
of the algorithms can be derived from Table
2: G is superior to G2P4 which is superior to
G2P5.

Table 2: THSD results for generators G,
G2P4, and G2P5, on the MIPLIB3 C
instances.

4 Conclusions
Comparing cut generators for MILP is not
an easy matter. One might want to compare
speed of generation, speed of reoptimization
after adding a round of cuts, or strength of
the generated cuts. Testing for strength, in
particular, is difficult. The contention of
this paper is that comparing strength of cut
generators without a sense of how accurate
the generators are is not very informative.
While one could try to devise a method to
test simultaneously accuracy and strength,
we propose here to first assess the accuracy
of a cut generator and then compare
strength of cut generators that have similar
accuracy.

The proposed method, random diving
towards a feasible solution, has the attractive
feature that its results depend only on
the cut generator and the precision of the
LP solver. While the latter dependency
is unfortunate (but could possibly be
removed by using an exact LP solver), the
dependency on algorithmic parts outside
the cut generator is far smaller than in
any other test that we are aware of. As is
usual when testing numerical precision of
algorithms, the results might also depend
on the machine and compiler used in the

tests. The contribution of this paper is thus
more the testing method than the ranking
of the generators obtained in Section 3. The
dependency of the ranking obtained on the
choice of the sample problems unfortunately
prevents to draw conclusions on the relative
strength of families of cuts in general. This
weakness of the proposed method does not
seem easy to remove.

Another interesting feature of the
method is that analyzing the results raises
many interesting questions directly related
to improving the performances of a cut
generator. For example, studying why
failures occur on an apparently innocuous
instance such as gt2_c might suggest new
way to prevent the generation of invalid
cuts. Investigating how aggressive one
can be with the parameter setting, yet
keeping a low probability of generating
invalid cuts, is a question with important
practical implications, in particular if this
can be linked to properties of the instance.
The method is well-suited to explore such
questions.

References
[1] Applegate D.L., Cook W., Dash S.,

Espinoza D.G., “Exact Solutions to Linear
Programming Problems”, preprint, (2006).

[2] Balas E., “Disjunctive Programming:
Cutting Planes from Logical Conditions”,
in: Mangasarian O.L. et al., eds.,
Nonlinear Programming, Vol. 2, Academic
Press, New York (1975) 279–312.

[3] Bixby R.E., Ceria S., McZeal C.M.,
Savelsbergh M.W.P, MIPLIB 3.0, www.
caam.rice.edu/~bixby/miplib/miplib.html.

[4] Cohen P.R., Empirical Methods for Artificial
Intelligence, MIT Press (1995).

[5] COIN-OR, www.coin-or.org.
[6] Cook W., Dash S., Fukasawa R., Goycoolea

M., “Numerically Accurate Gomory
Mixed-Integer Cut”, preprint (2007).

[7] Dhiflaoui M., Funke S., Kwappik C.,
Mehlhorn K., Seel M., Sch¨omer E.,
Schulte R., Weber D., “Certifying and
Repairing Solutions to Large LPs. How
Good are LP-solvers?”, Proceedings of
the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms
(Baltimore, MD, 2003), 255–256, ACM,
New York, (2003).

[8] Gomory R., “An Algorithm for the Mixed
Integer Problem”, Technical Report RM-
2597, The RAND Corporation (1960).

[9] Hooker J.N., “Needed: An Empirical
Science of Algorithms”, Operations Research
42 (1994), 201–212.

[10] Hooker J.N., “Testing Heuristics: We Have
It AllWrong”, Journal of Heuristics 1 (1995),
33–42.

[11] Jeroslow R., “Cutting Plane Theory:
Disjunctive Methods”, Annals of Discrete
Mathematics 1 (1972) 293–330.

[12] Koch T., “The Final Netlib Results”,
Operations Research Letters 32 (2004),
138–142.

[13] Marchand H., Martin A., Weismantel R.,
Wolsey L., “Cutting planes in integer and
mixed integer programming”, Workshop
on Discrete Optimization, DO’99
(Piscataway, NJ), Discrete Appl. Math. 123
(2002), 397–446.

[14] F. Margot, “Testing Cut Generators for
MILP”, TepperWorking Paper 2007-E43
(2007).

[15] McGeoch C.C., “Toward an Experimental
Method for Algorithm Simulation”,
INFORMS Journal on Computing 8 (1996),
1–15.

[16] McGeoch C.C., “Experimental Analysis
of Algorithms”, Notices of the American
Mathematical Association 48 (2001),
304–311.

[17] McGeoch C.C., “Experimental Analysis
of Optimization Algorithms”, Handbook
of applied optimization, Oxford University
Press (2002), 1044–1052.

[18] McGeoch C.C., “Experimental Analysis
of Algorithms”, Handbook of global
optimization, Vol. 2, Kluwer (2002),
489–513.

[19] Nemhauser G.L., Wolsey L.A., “A
Recursive Procedure to Generate all
Cuts for 0-1 Mixed Integer Programs”,
Mathematical Programming 46 (1990)
379–390.

[20] Neumaier A., Shscherbina O., “Safe
Bounds in Linear and Mixed-Integer
Linear Programming”, Mathematical
Programming 99 (2004), 283–296.

[21] R statistical software, www.r-project.org

optim a 7 7 july 2008 page 10

Steve Wright
3 June 2008

The summer conference season is already in
full swing as I write. IPCO 2008 took place
last week in Bertinoro, and from all reports
was another outstanding success. Our
thanks go to Andrea Lodi and Alessandro
Panconesi and the other members of the
organizing committee and to Giovanni
Rinaldi and the program committee, and of
course to the attendees too, for maintaining
the high standards of this event. Another
meeting organized in association with MPS
– EngOpt 2008 – is taking place this week
in Rio de Janeiro.

Many MPS members, including many
from Europe, were in attendance at the
SIAM Conference on Optimization in
Boston last month. The conference had
excellent plenary presentations and many
other highlights, including technical sessions
by students and collaborators of Society
stalwart Mike Todd, who celebrated his 60th
birthday during ICCOPT in 2007. A dinner
honoring Mike along with Dave Shanno,
also a distinguished long-time member of
MPS, followed the conference.

I am delighted to announce that Jon Lee
(IBM) has agreed to become Chair of the
Executive Committee, the senior appointed
position in MPS. In this role, Jon becomes
an ex-officio member of all committees
of the Society. We’ll much appreciate his
advice on the many important issues facing
the society in the months ahead.

Following the great success of the first
two ICCOPTs (Rensselaer, 2004 and
McMaster, 2007), a steering committee
headed by Tamas Terlaky solicited
proposals for the third meeting in the
series, planned for 2010. The committee
evaluated several excellent alternatives,
and eventually recommended a proposal
to hold the meeting at the University of
Chile in Santiago, July 2010. There is
excellent support from Chilean institutions
for the meeting and for the Winter School
that precedes it. (Note that July is winter
in Santiago – though surely an infinitely
milder winter than the one we just
experienced in Madison!) I am grateful
to all those who submitted proposals and
to Tamas and his committee for their
hard work. We look forward to helping
conference chair Alejandro Jofre and his
colleagues in Chile in any way we can to
make ICCOPT III as successful as earlier
editions of this conference.

Organization of ISMP XX (Chicago,
August 23-29) is proceeding apace, with the
opening session scheduled for Symphony
Center (home of the renowned Chicago
Symphony Orchestra) and the banquet to be
held at the Field Museum, Chicago’s famous
natural history museum. Meeting themes
and plenary speakers will be announced
soon. Please keep an eye on www.ismp2009.
org for more information as it becomes
available.

As always, ISMP is the occasion on
which our Society awards its prizes for
professional excellence. The process of
assembling committees for these prizes in
well advanced. The society web site www.
mathprog.org contains information about
the prizes and calls for the 2009 awards.
Please give some thought to putting forward
worthy candidates from among your
colleagues.

A niece of the late Ray Fulkerson –
namesake of the Fulkerson prize – contacted
me recently. She and other family members
were previously not aware of the award,
which dates to 1979, but were delighted to
hear about it and are keen to participate in
the 2009 award ceremony.

MPS Chair’s Column — Optima 77

The 20th International Symposium on Mathematical Programming takes place
August 23-29, 2009 in Chicago, Illinois and marks the 60th anniversary of the Zeroth
Symposium organized by the Cowles Commission at the University of Chicago in
June, 1949. The symposium will be held at the University of Chicago's Gleacher Center
and the Marriott Downtown Chicago Magnificent Mile Hotel. Festivities include the
opening session in Chicago's Orchestra Hall, home of the Chicago Symphony Orchestra,
the conference banquet at the Field Museum, Chicago's landmark natural history
museum, and a celebration of the 60th anniversary of the Zeroth Symposium. Plenary
speakers and information on proposals for mini-symposia will be announced shortly on
the conference Web site, www.ismp2009.org.

page 11

MPS-SIAM Book Series on
OPTIMIZATION
Philippe Toint, Editor-in-Chief
University of Namur, Belgium

The goal of the series is to publish a broad range of titles
in the field of optimization and mathematical programming,
characterized by the highest scientific quality.

BOOKS IN THE SERIES INCLUDE:

Linear Programming with MATLAB
Michael C. Ferris, Olvi L. Mangasarian, and Stephen J. Wright
2007 · xii + 266 pages · Softcover · ISBN 978-0-898716-43-6
List Price $45.00 · SIAM Member Price $31.50 · Order Code MP07

Variational Analysis in Sobolev and BV Spaces:
Applications to PDEs and Optimization
Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille
2005 · xii + 634 pages · Softcover · ISBN 978-0-898716-00-9
List Price $140.00 · MPS/SIAM Member Price $98.00 · Order Code MP06

Applications of Stochastic Programming
Edited by Stein W. Wallace and William T. Ziemba
2005 · xvi + 709 pages · Softcover · ISBN 978-0-898715-55-2
List Price $142.00 · MPS/SIAM Member Price $99.40 · Order Code MP05

The Sharpest Cut: The Impact of Manfred Padberg
and His Work
Edited by Martin Grötschel
2004 · xi + 380 pages · Hardcover · ISBN 978-0-898715-52-1
List Price $106.00 · MPS/SIAM Member Price $74.20 · Order Code MP04

A Mathematical View of Interior-Point Methods
in Convex Optimization
James Renegar
2001 · viii + 117 pages · Softcover · ISBN 978-0-898715-02-6
List Price $47.00 · MPS/SIAM Member Price $32.90 · Order Code MP03

Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications
Aharon Ben-Tal and Arkadi Nemirovski
2001 · xvi + 488 pages · Softcover · ISBN 978-0-898714-91-3
List Price $121.50 · MPS/SIAM Member Price $85.05 · Order Code MP02

Trust-Region Methods
A. R. Conn, N. I. M. Gould, and Ph. L. Toint
2000 · xx + 959 pages · Hardcover · ISBN 978-0-898714-60-9
List Price $146.50 · MPS/SIAM Member Price $102.55 · Order Code MP01

YOU ARE INVITED
TO CONTRIBUTE

If you are interested in
submitting a proposal or
manuscript for
publication in the series
or would like additional
information, please
contact:

Philippe Toint
University of Namur
philippe.toint@fundp.ac.be

OR

Sara J. Murphy
Series Acquisitions Editor
SIAM
murphy@siam.org

SIAM publishes quality
books with practical
implementation at prices
affordable to individuals.

Complete information about SIAM and its book program can be found at www.siam.org/books.
See summaries, tables of contents, and order online at www.siam.org/catalog.

Call for Manuscripts

EDITOR:
Andrea Lodi
DEIS University of Bologna,
Viale Risorgimento 2,
I - 40136 Bologna, Italy
e-mail: andrea.lodi@unibo.it

CO-EDITORS:
Alberto Caprara
DEIS University of Bologna,
Viale Risorgimento 2,
I - 40136 Bologna, Italy
e-mail: acaprara@deis.unibo.it

Katya Scheinberg
IBM T.J. Watson Research Center
PO Box 218
Yorktown Heights, NY 10598, USA
katyas@us.ibm.com

founding editor:
Donald W. Hearn

published by the
mathematical programming society &

University of Florida

Journal contents are subject to change by the
publisher.

FIRST CLASS MAIL

O P T I M A

mathematical programming society

Center for Applied Optimization
401 Weil Hall
PO Box 116595
Gainesville, FL 32611-6595 USA

